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Abstract

Recent work in crosslingual semantic parsing
has successfully applied machine translation
to localize accurate parsing to new languages.
However, these advances assume access to
high-quality machine translation systems, and
tools such as word aligners, for all test lan-
guages. We remove these assumptions and
study cross-lingual semantic parsing as a zero-
shot problem without parallel data for 7 test
languages (DE, ZH, FR, ES, PT, HI, TR). We
propose a multi-task encoder-decoder model
to transfer parsing knowledge to additional
languages using only English-Logical form
paired data and unlabeled, monolingual utter-
ances in each test language. We train an en-
coder to generate language-agnostic represen-
tations jointly optimized for generating logical
forms or utterance reconstruction and against
language discriminability. Our system frames
zero-shot parsing as a latent-space alignment
problem and finds that pre-trained models can
be improved to generate logical forms with
minimal cross-lingual transfer penalty. Ex-
perimental results on Overnight and a new
executable version of MultiATIS++ find that
our zero-shot approach performs above back-
translation baselines and, in some cases, ap-
proaches the supervised upper bound.

1 Introduction

Executable semantic parsing translates a natural
language utterance to a logical form for execution
in some knowledge base to return a denotation. The
parsing task realizes an utterance as a semantically-
identical, but machine-interpretable, expression
grounded in a denotation. The transduction be-
tween natural and formal languages has allowed
semantic parsers to become critical infrastructure
in the pipeline of human-computer interfaces for
question answering from structured data (Berant
et al., 2013; Liang, 2016; Kollar et al., 2018).

Sequence-to-sequence approaches have proven
capable in producing high quality parsers (Jia and

Liang, 2016; Dong and Lapata, 2016) with further
modeling advances in multi-stage decoding (Dong
and Lapata, 2018; Guo et al., 2019), schema linking
(Shaw et al., 2019; Wang et al., 2019) and grammar
based decoding (Yin and Neubig, 2017; Lin et al.,
2019). In addition to modeling developments, re-
cent work has also expanded to multi-lingual pars-
ing. However, this has primarily required that par-
allel training data is either available (Jie and Lu,
2014), or requires professional translation to gen-
erate (Susanto and Lu, 2017a). This creates an
entry barrier to localizing a semantic parser which
may not be necessary. Sherborne et al. (2020) and
Moradshahi et al. (2020) explore the utility of ma-
chine translation, as a cheap alternative to human
translation, for training data but found translation
artifacts as a performance limiting factor. Zhu et al.
(2020) and Li et al. (2021) both examine zero-shot
spoken language understanding and observed a sig-
nificant performance penalty from cross-lingual
transfer from English to lower resource languages.

Cross-lingual generative semantic parsing, as
opposed to the slot-filling format, has been under-
explored in the zero-shot case. This challenging
task combines the outstanding difficulty of struc-
tured prediction, for accurate parsing, with a la-
tent space alignment requirement, wherein mul-
tiple languages should encode to an overlapping
semantic representation. Prior work has identified
this penalty from cross-lingual transfer (Artetxe
et al., 2020; Zhu et al., 2020; Li et al., 2021) that
is insufficiently overcome with pre-trained mod-
els alone. While there has been some success in
machine-translation based approaches, we argue
that inducing a shared multilingual space without
parallel data is superior because (a) this nullifies
the introduction of translation or word alignment
errors and (b) this approach scales to low-resource
languages without reliable machine translation.

In this work, we propose a method of zero-shot
executable semantic parsing using only mono-
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lingual data for cross-lingual transfer of parsing
knowledge. Our approach uses paired English-
logical form data for the parsing task and adapts to
additional languages using auxiliary tasks trained
on unlabeled monolingual corpora. Our motivation
is to accurately parse languages, for which paired
training data is unseen, to examine if any transla-
tion is required for accurate parsing. The objective
of this work is to parse utterances in some language,
l, without observing paired training data, (xl, y),
suitable machine translation, word alignment or
bilingual dictionaries between l and English. Us-
ing a multi-task objective, our system adapts pre-
trained language models to generate logical forms
from multiple languages with a minimized penalty
for cross-lingual transfer from English to German
(DE), Chinese (ZH), French (FR), Spanish (ES),
Portuguese (PT), Hindi (HI) and Turkish (TR).

2 Related Work

Cross-lingual Modeling This area has recently
gained increasing interest across a range of natural
language understanding settings, with benchmarks
such as XGLUE (Liang et al., 2020) and XTREME
(Hu et al., 2020) providing classification and gen-
eration benchmarks across a range of languages
(Zhao et al., 2020). There has been significant inter-
est in cross-lingual approaches to dependency pars-
ing (Tiedemann et al., 2014; Schuster et al., 2019),
sentence simplification (Mallinson et al., 2020) and
spoken-language understanding (SLU; He et al.,
2013; Upadhyay et al., 2018). Within this, pre-
training has shown to be widely beneficial for cross-
lingual transfer using models such as multilingual
BERT (Devlin et al., 2019) or XLM-Roberta (Con-
neau et al., 2020a).

Broadly, pre-trained models trained on massive
corpora purportedly learn an overlapping cross-
lingual latent space (Conneau et al., 2020b) but
have also been identified as under-trained for some
tasks (Li et al., 2021). A subset of cross-lingual
modeling has focused on engineering alignment of
multi-lingual word representations (Conneau et al.,
2017; Artetxe and Schwenk, 2018; Hu et al., 2021)
for tasks such as dependency parsing (Schuster
et al., 2019; Xu and Koehn, 2021) and word align-
ment (Jalili Sabet et al., 2020; Dou and Neubig,
2021).

Semantic Parsing For parsing, there has been
recent investigation into multilingual parsing us-
ing multiple language ensembles using hybrid gen-

erative trees (Lu, 2014; Susanto and Lu, 2017b)
and LSTM-based sequence-to-sequence models
(Susanto and Lu, 2017a). This work has largely
affirmed the benefit of “high-resource” multi-
language ensemble training (Jie and Lu, 2014).
Code-switching in multilingual parsing has also
been explored through mixed-language training
datasets (Duong et al., 2017; Einolghozati et al.,
2021). For adapting a parser to a new language,
machine translation has been explored as mostly
reasonable proxy for in-language data (Sherborne
et al., 2020; Moradshahi et al., 2020). However,
machine translation, in either direction, can intro-
duce limiting artifacts (Artetxe et al., 2020) and
generalisation is limited due to a “parallax” error
between gold test utterances and “translationese”
training data (Riley et al., 2020).

Zero-shot parsing has primarily focused on
‘cross-domain’ challenges to improve parsing
across varying query structure and lexicons (Herzig
and Berant, 2018; Givoli and Reichart, 2019) or
different databases (Zhong et al., 2020; Suhr et al.,
2020). The Spider dataset (Yu et al., 2018) for-
malises this challenge with unseen tables at test
time for zero-shot generalisation. Combining zero-
shot parsing with cross-lingual modeling has been
examined for the UCCA formalism (Hershcovich
et al., 2019) and for task-oriented parsing (see be-
low). Generally, we find that cross-lingual exe-
cutable parsing has been under-explored in the zero-
shot case.

Executable parsing contrasts to more abstract
meaning expressions (AMR, λ-calculus) or hybrid
logical forms, such as decoupled TOP (Li et al.,
2021), which cannot be executed to retrieve deno-
tations. Datasets such as ATIS (Dahl et al., 1994)
have both executable parsing and spoken language
understanding format. We focus on only the for-
mer, as a generation task, and note that results for
the latter classification task are not comparable.

Dialogue Modeling Usage of MT has also been
extended to a task-oriented setting using the MTOP
dataset (Li et al., 2021), employing a pointer-
generator network (See et al., 2017) to generate
dialogue-act style logical forms. This has been
combined with adjacent SLU tasks, on MTOP
and MultiATIS++ (Xu et al., 2020), to combine
cross-lingual task-oriented parsing and SLU clas-
sification. Generally, these approaches addition-
ally require word alignment to project annotations
between languages. Prior zero-shot cross-lingual



work in SLU (Li et al., 2021; Zhu et al., 2020; Kr-
ishnan et al., 2021) similarly identifies a penalty
for cross-lingual transfer and finds that pre-trained
models and machine translation can only partially
mitigate this error.

Compared with similar exploration of cross-
lingual parsing such as Xu et al. (2020) and Li
et al. (2021), the zero-shot case is our primary fo-
cus. Our study assumes a case of no paired data
in the test and our proposed approach is more sim-
ilar to Mallinson et al. (2020) and Xu and Koehn
(2021) in that we objectify the convergence of pre-
trained representations for a downstream task. Our
approach is also similar to work in zero-resource
(Firat et al., 2016) or unsupervised machine trans-
lation with monolingual corpora (Lample et al.,
2018). Contrastingly, our approach is not pair-
wise between languages owing to our single multi-
lingual latent representation.

3 Problem Formulation

The primary challenge for cross-lingual parsing
is learning parameters, that can parse an utter-
ance, x, from any test language. Typically, a
parser trained on language l, or multiple lan-
guages {l1, l2, . . . , lN}, is only capable for these
languages and performs poorly outside this set. For
a new language, conventional approaches requires
parallel datasets and models (Jie and Lu, 2014;
Haas and Riezler, 2016; Duong et al., 2017).

In our work, zero-shot parsing refers to parsing
utterances in languages without paired data during
training. For some language, l, there exists no pair-
ing of xl to a logical form, y, except for English.
During training, the model only generates logical
forms conditioned on English input data. Other
languages are incorporated into the model using
auxiliary objectives detailed in Section 4. Zero-
shot parsing happens at test time, when a logical
form is predicted conditioned upon an input ques-
tion from any test language.

Our approach improves the zero-shot case using
only monolingual objectives to parse additional lan-
guages beyond English1 without semantic parsing
training data. We explore a hypothesis that a multi-
lingual latent space can be learned through auxil-
iary tasks in tandem with logical form generation.
We desire to learn a language-agnostic representa-

1English acts as the “source” language in our work as the
source language for all explored datasets. We express all other
languages as “target” languages.

tion space to minimize the penalty of cross-lingual
transfer and improve parsing of languages without
training data. To generate this latent space, we
posit that only unpaired monolingual data in the
target language, and some pre-trained encoder, are
required. We remove the assumption that machine
translation is suitable and study the inverse case
wherein only paired data in English and monolin-
gual data in target languages are available. This
frames the cross-lingual parsing task as one of la-
tent representation alignment only, to explore a
possible upper bound of parsing accuracy without
errors from external dependencies.

The benefit of our zero-shot method is that our
approach requires only external corpora in the
test language. Using only English paired data
and monolingual corpora, we can generate log-
ical forms above back-translation baselines and
compete with fully supervised in-language train-
ing. For example, consider the German test of the
Overnight dataset (Wang et al., 2015; Sherborne
et al., 2020) which lacks German paired training
data. To competitively parse this test set, our ap-
proach minimally requires only the original English
training data and collection of unlabeled German
utterances.

4 Method

We adopt a multi-task sequence-to-sequence model
(Luong et al., 2016) combining logical form gen-
eration with two auxiliary objectives. The first
is a monolingual reconstruction loss, similar to
domain-adaptive pre-training (Gururangan et al.,
2020), and the second is a language identification
task. We describe each model component below:

Generating Logical Forms Predicting logical
forms is the primary output objective for the sys-
tem. For an utterance x = (x1, x2, . . . , xT ), we de-
sire to predict a logical form y = (y1, y2, . . . , yM )
representing the same meaning in a machine-
executable language. We model this transduction
task using a sequence-to-sequence neural network
(Sutskever et al., 2014) based upon the Transformer
architecture (Vaswani et al., 2017).

The sequence x is encoded to a latent represen-
tation z = (z1, z2, . . . , zT ) through Equation (1)
using a stacked self-attention Transformer encoder,
E, with weights θE . The conditional probability
of the output sequence y is expressed as Equation
(2) as each token yi is autoregressively generated
based upon z and prior outputs, y<i. The distribu-



tion is modeled in Equation (3) using Transformer
decoder, DLF for logical forms with associated
weights θDLF

.

z = E (x | θE) (1)

p (y | x) =
M∏
i=0

p (yi | y<i, x) (2)

p (yi|y<i, x) = softmax (DLF (y<i | z, θDLF
))
(3)

For semantic parsing dataset SLF =
{xn, yn}Nn=0, we generate an output predic-
tion, ŷ, through the encoder and logical form
decoder, {E, DLF }. Equation (4) describes
our minimization objective computed using
cross-entropy loss between y and ŷ.

LLF = −
∑

(x, y)∈SLF

log p (y | x) (4)

Reconstructing Utterances The secondary ob-
jective encourages multi-lingual semantic represen-
tations in encoding space, z, in Equation (1), using
an additional decoder to recover a noisy input. This
co-adaptation strategy steers a latent space suitable
for both decoders, improving the parsing accuracy
of languages without training logical forms. An
utterance, x, is input to the encoder, E, and a re-
construction decoder, DNL, then tries to recover
x from the latent representation. We follow the
denoising objective from Lewis et al. (2020) and
replace x with noised input x̃ = N(x) for some
noising function N. The output probability of re-
construction, or denoising, is described in Equation
(6) with each token predicted through Equation (7)
using decoder, DNL, with associated weights θDNL

.

z = E (x̃ | θE) (5)

p (x | x̃) =
T∏
i=0

p (xi | x<i, x̃) (6)

p (xi|x<i, x̃) = softmax (DNL (x<i | z, θDNL
))
(7)

The reconstruction objective is trained using
both the utterances from SLF and monolingual data,
SNL = {{xn}Nn=0}Ll=0, in L languages. The sub-
model, {E, DNL}, predicts the reconstruction of x
from x̃ with an optimization objective described in
Equation (8). Our approach only considers mono-
lingual reconstruction and we leave an additional

translation objective, using bitext, to future work.

LNL = −
∑
x

log p (x | x̃) (8)

Language Prediction We augment the model
with a third objective designed to encourage
language-agnostic representations by reducing the
discriminability of the source language, l, from
z. Equation (9) defines a Language Prediction
(LP) network to predict l from z using a feedfor-
ward classifier over L training languages. Here,
Wdi ∈ R|z|×|z| and Wdo ∈ RL×|z| are layer
weights, bdi ∈ R|z| and bdo ∈ RL are layer
biases and G is the Gaussian Error Linear Unit
(Hendrycks and Gimpel, 2020). Equation (10) de-
scribes the conditional model for the output distri-
bution, as a language label is predicted using the
time-average of the input encoding z of length T .
Equation (11) describes the objective function for
the LP network, however, we add a gradient re-
versal layer in the backward pass prior to the LP
network to encourage the encoder to produce lan-
guage invariant representations (Ganin et al., 2016).
The LP network is optimized to discriminate the
source language from z, but the encoder is now
optimized against this objective2. Our intuition
here is that discouraging language discriminabil-
ity in z encourages latent representation similarity
across languages, and therefore reduce the penalty
for cross-lingual transfer.

LP (x) =Wdo G (Wdix+ bdi) + bdo (9)

p (l | x) = softmax

(
LP

(
1

T

∑
t

zt

))
(10)

LLP = −
∑
x

log p (l | x) (11)

Combined Model The combined model uses a
single encoder, E, and the three objective decoders
{DLF, DNL,LP} to generate outputs. During train-
ing, an English query is encoded and input to
all three output systems to express output loss as
LLF +LNL +LLP. For additional languages with-
out (x, y) pairs, the utterance is encoded and then
input only to the auxiliary objectives for a com-
bined loss as LNL + LLP. During inference, an
utterance is encoded and always input to DLF to
predict a logical form, ŷ, regardless of source lan-
guage, l.

2This approach is similar to adversarial methods (Goodfel-
low et al., 2014), however, our approach is not generative.



∂L
∂θE

= αLF
∂LLF
∂θE

+ αNL
∂LNL

∂θE
− λαLP

∂LLP
∂θE

(12)

λ =
2

1 + e−10p
+ 1 (13)

During the backward pass, each output head
backpropagates the gradient signal from the re-
spective objective function. For the encoder, these
signals are combined as Equation (12) where
α{LF, NL, LP} are loss weightings and λ is the re-
versed gradient scheduling parameter from (Ganin
et al., 2016). The value of λ increases with training
progress p according to Equation (13) to limit the
impact of noisy predictions during early training.

Our intuition is that the parser will adapt and rec-
ognize an encoding from an unfamiliar language
through jointly training to generate logical forms
and our auxiliary objectives using monolingual
data. This sequence-to-sequence approach is highly
flexible and may be useful for zero-shot approaches
to additional generation tasks.

5 Data & Resources

5.1 Semantic Parsing

We analyze our model using two datasets to ex-
amine a broader language ensemble and a three-
language multi-domain parsing benchmark. The
former is a new version of the ATIS dataset of
travel information (Dahl et al., 1994). Starting with
the English utterances and simplified SQL queries
from Iyer et al. (2017), using the same dataset split
as Kwiatkowski et al. (2011), we align these to the
parallel utterances from MultiATIS++ dataset for
spoken language understanding (Xu et al., 2020).
Therefore, we add executable SQL queries to 4473
training, 493 development, and 448 test utterances
in Chinese (ZH), German (DE), French (FR), Span-
ish (ES), and Portuguese (PT) that were previously
constructed for the slot-filling format of ATIS. Ad-
ditionally, we align the test set to the Hindi (HI)
and Turkish (TR) utterances from Upadhyay et al.
(2018). We now can predict SQL for the ATIS
dataset from eight natural languages. This repre-
sents a significant improvement over 2 or 3 lan-
guage approaches (Sherborne et al., 2020; Duong
et al., 2017). Note that MultiATIS++ Japanese set
is excluded as the utterance alignment between this
language and others was not recoverable.

We also examine Overnight (Wang et al.,

2015), an eight-domain dataset covering Basket-
ball, Blocks, Calendar, Housing, Publications,
Recipes, Restaurants, and Social Network do-
mains. This dataset comprises 13,682 English ut-
terances paired with λ−DCS logical forms, ex-
ecutable in SEMPRE (Berant et al., 2013), split
into 8,754/2,188/2,740 for training/validation/test
respectively. The Overnight training data is only
available in English and we use the Chinese and
German test set translations from Sherborne et al.
(2020) for multilingual evaluation. Each domain
employs some distinctive linguistic structures, such
as spatial relationships in Blocks or temporal re-
lationships in Calendar, and our results on this
dataset permit a detailed study on how cross-lingual
transfer applies to various linguistic phenomena.

Reconstruction Data For the reconstruction
task, we use questions from the MKQA corpus
(Longpre et al., 2020), a translation of 10,000 sam-
ples from NaturalQuestions (Kwiatkowski et al.,
2019) into 26 languages. We posit that MKQA is
suitable for our auxiliary objective as (a) the utter-
ances, as questions, closely model our test set while
being highly variable in domain, (b) the corpus in-
cludes all training languages in our experiments,
and (c) the balanced data between languages limits
overexposure effects to any one test language to
the detriment of others. For evaluating ATIS, we
use 60,000 utterances from MKQA in languages
with a training set (EN, DE, ZH, FR, ES, PT) for
comparison. For Overnight, we use only 30,000
utterances in EN, DE, and ZH.

5.2 Pre-trained Models

The model described in Section 4 relies on some
encoder model, E, to generate latent representa-
tions amenable to both semantic parsing and our
additional objectives. We found our system per-
forms poorly without using some pre-trained model
within the encoder to provide prior knowledge
from large external corpora. Prior work observed
improvements using multilingual BERT (Devlin
et al., 2019) and XLM-Roberta (Conneau et al.,
2020a). However, we find that these models under-
performed at cross-lingual transfer into parsing
and we instead report results using the encoder of
the mBART50 pre-trained sequence-to-sequence
model (Tang et al., 2020). This model extends
mBART (Liu et al., 2020), trained on a monolin-
gual de-noising objective over 25 languages, to 50
languages using multilingual bitext. We note that



the pre-training data is not balanced across lan-
guages, with English as the highest resource and
Portuguese as the lowest.

6 Experiments

Setting The implementation of our model, de-
scribed in Section 4, largely follows parameter
settings from Liu et al. (2020) for a Transformer
encoder-decoder model. The encoder, E, decoders,
{DLF, DNL}, and embedding matrices all use a
dimension size of 1024 with the self-attention pro-
jection of 4096 and 16 heads per layer. Both de-
coders are 6-layer stacks. Weights were initialized
by sampling from normal distribution N (0, 0.02).
When using mBART50 to initialize the encoder, we
use all 12 pre-trained layers frozen and append one
additional layer. The domain prediction network is
a two-layer feed-forward network projecting from
z to 1024 hidden units then to |L| for L languages.
For the reconstruction noising function, we use to-
ken masking to randomly replace u tokens in x
with “<mask>”. u is sampled from U (0, v) and
we optimize v = 3 as the best setting.

The system was trained using the Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 1 × 10−4, and a weight decay factor of 0.1.
We use a “Noam” schedule for the learning rate
(Vaswani et al., 2017) with a warmup of 5000 steps.
Loss weighting values for α{LF, NL, LP} were set
to {1, 0.33, 0.1} respectively. Batches during train-
ing were size 50 and homogeneously sampled from
either SLF or SNL, with an epoch consuming one
pass over both. Models were trained for a maxi-
mum of 100 epochs with early stopping. Model se-
lection and hyperparameters were tuned on the SLF
validation set in English. Test predictions were gen-
erated using beam search with 5 hypotheses. Evalu-
ation is reported as denotation accuracy, computed
by comparing the retrieved denotation from the pre-
diction, ŷ, inside the knowledge base to that from
executing the gold-standard logical form.

Each model is trained on 1 NVIDIA RTX3090
GPU. All models were implemented using Al-
lenNLP (Gardner et al., 2018) and PyTorch (Paszke
et al., 2017), using pre-trained models from Hug-
gingFace (Wolf et al., 2019).

Baseline We compare to a back-translation base-
line for both datasets. Here, the test set in all
languages is translated to English using Google
Translate (Wu et al., 2016) and input to reference
sequence-to-sequence model trained on only En-

glish queries. We consider improving upon this
“minimum effort” approach as a lower-bound for
justifying our approach. Additionally, we com-
pare to an upper-bound of professional training
data translation for MultiATIS++ in DE, ZH, FR,
ES, and PT. This represents the “maximum effort”
strategy that our system approaches.

7 Results

We implement the model described in Section 4,
with hyper-parameters described in Section 6, and
report our results for ATIS in Table 1 and Overnight
in Table 2. Additional results for Overnight are
reported in Tables 3-5 in Appendix A. For both
datasets, we present ablated results for a parser
without auxiliary objectives (DLF only), using only
parsing and reconstruction (DLF+DNL) and finally
our full model using two auxiliary objectives with
parsing (DLF +DNL + LP).

Comparing to baselines, we find that generally,
the approach without auxiliary objectives performs
worse than back-translation. This is unsurprising,
as this initial approach relies on only information
captured during pre-training to be capable at pars-
ing non-English. This result is similar to Li et al.
(2021) in observing a large penalty from cross-
lingual transfer. However, our approach is differen-
tiated in that we now improve upon this with our
multi-task model. Comparing our auxiliary objec-
tives, we broadly find more benefit to monolingual
reconstruction than language prediction. Four ATIS
test languages improve by > 10% using the recon-
struction objective, whereas the largest improve-
ment from adding language prediction is +8%.

ATIS We identify improvements in accuracy
across all languages by incorporating our recon-
struction objective and then further benefit with
the language prediction objective. The strongest
improvements are for Chinese (+20.7%) and Por-
tuguese (+18.0%) from Model (1) to Model (3).
This is a sensible result for Portuguese, given that
this language has comparatively very little data
(49,446 sentences) during pre-training in Tang et al.
(2020). Chinese is strongly represented during this
same pre-training, with 10,082,367 sentences, how-
ever, Model (1) performs extremely poorly here.
Our observed improvement for Chinese could be
a consequence of this language being less ortho-
graphically similar to other pre-training languages.
This could result in poorer cross-lingual informa-
tion sharing during pre-training and therefore leave



Model EN DE ZH FR ES PT HI TR

Baseline

Monolingual training 77.2 66.6 64.9 67.8 64.1 66.1 - -
Back-translation - 56.9 51.4 58.2 57.9 57.3 52.6 52.7

Our model

(1) DLF only 77.2 50.2 38.5 61.3 46.5 42.5 40.4 37.3
(2) DLF +DNL 77.7 61.1 51.2 62.7 58.2 57.5 49.5 44.7
(3) DLF +DNL + LP 76.3 67.1 59.2 66.9 58.2 60.5 54.1 47.1

Table 1: Denotation accuracy for ATIS (Dahl et al., 1994) in English (EN), German (DE), Chinese (ZH), French
(FR), Spanish (ES), Portuguese (PT), Hindi (HI) and Turkish (TR) using data from Upadhyay et al. (2018); Xu
et al. (2020). We report results for multiple systems: (1) using only English semantic parsing data, (2) Multi-
task combined parsing and reconstruction and (3) Multitask parsing, reconstruction and language prediction. We
compare to a back-translation baseline and monolingual upper-bound results where available.

Model EN DE ZH

Baseline

Back-translation - 60.1 48.1

Our model

(1) DLF only 80.5 58.4 48.0
(2) DLF +DNL 81.3 62.7 49.5
(3) DLF +DNL + LP 81.4 64.3 52.7

Table 2: Average denotation accuracy across all do-
mains for Overnight (Wang et al., 2015). for English
(EN), German (DE) and Chinese (ZH). We report re-
sults for multiple systems: (1) using only English se-
mantic parsing data, (2) Multi-task combined parsing
and reconstruction and (3) Multitask parsing, recon-
struction and language prediction. We compare to a
back-translation baseline for both ZH and DE.

more to be gained in our downstream task. We
find less improvement across our models in lan-
guages closer to English, finding only a +5.6%
improvement for French and +11.7% for Spanish.
However, only for these languages do we approach
the supervised upper-bound with −0.9% error for
French and a +0.5% gain for German. Given we
used no semantic parsing data in these languages,
this represents significant competition to methods
requiring dataset translation for success.

We also note that our system improves parsing
on Hindi and Turkish, even though these are absent
from the auxiliary training objectives. The model
is not trained to reconstruct or identify either of
these languages, however, we find that our sys-
tem improves parsing regardless. By adapting our
latent representation to multiple generation objec-

tives and encouraging language-agnostic encodings
– we find the model can generate better latent repre-
sentations for two typologically diverse languages
without guidance. This result suggests that our ap-
proach has a wider benefit to cross-lingual transfer
beyond the languages we explicitly desire to trans-
fer towards. We find our system improves above
our baseline for Hindi but not Turkish. This could
be another consequence of unbalanced pre-training,
given the 1,327,206 Hindi sentences compared to
204,200 for Turkish.

Overnight Table 2 similarly identifies improve-
ment for both German and Chinese using mono-
lingual reconstruction and language prediction ob-
jectives. We observe smaller improvements be-
tween Model (1) and Model (3) compared to ATIS,
+5.9% for German and +4.7% for Chinese, which
may be a consequence of increased question com-
plexity across Overnight domains. Results for indi-
vidual domains are given in Appendix A for brevity,
however, we did not observe any strong trends
across domains in either language. Comparatively,
our best system is more accurate for German than
Chinese by 9.6%, which may be another conse-
quence of orthographic dissimilarity between lan-
guages during pre-training and our approach.

Finally, we also note the capability of our model
for English appears mostly unaffected by our addi-
tional objectives. For both ATIS and Overnight, we
observe no catastrophic forgetting (McCloskey and
Cohen, 1989) for the source language and, in some
cases, a marginal performance improvement from
our multi-task objectives. While semantic parsing
for English is well studied and not the focus of our



work, this result suggests there is minimal required
compromise in maintaining parsing accuracy for
English and transferring this capability to other
languages.

8 Conclusion

We present a new approach to zero-shot cross-
lingual semantic parsing for accurate parsing of
languages without paired training data. We define
and evaluate a multi-task model combining logical
form generation with auxiliary objectives that re-
quire only unlabeled, monolingual corpora. This
approach minimizes the error from cross-lingual
transfer and improves parsing accuracy across all
test languages. We demonstrate that an absence
of semantic parsing data can be overcome through
aligning latent representations and extend this to
examine languages also unseen during our multi-
task alignment training. In the future, we plan to
explore additional objectives, such as translation,
in our model and consider larger and more diverse
corpora for our auxiliary objectives.
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EN Avg. Ba. Bl. Ca. Ho. Pu. Res. Rec. So.

DLF only 80.5 90.0 66.7 82.7 76.7 75.8 87.7 83.3 80.9
DLF +DNL 81.3 88.5 60.9 83.3 78.8 83.9 88.6 83.8 82.6
DLF +DNL + LP 81.4 87.7 64.4 85.1 77.8 80.1 88.0 85.6 83.0

Table 3: Denotation accuracy for Overnight (Wang et al., 2015) using the source English data. Domains are
Basketball, Blocks, Calendar, Housing, Publications, Recipes, Restaurants and Social Network.

DE Avg. Ba. Bl. Ca. Ho. Pu. Res. Rec. So.

Baseline

Back-translation 60.1 75.7 50.9 61.0 55.6 50.4 69.9 46.3 71.4

Our model

DLF only 58.4 70.3 51.1 61.9 54.0 49.7 65.4 42.1 73.1
DLF +DNL 62.7 73.1 56.1 66.1 58.7 49.7 70.2 57.9 70.1
DLF +DNL + LP 64.3 78.8 56.6 68.5 58.7 46.6 70.8 59.3 75.5

Table 4: Denotation accuracy for Overnight (Wang et al., 2015) using the German test set from Sherborne et al.
(2020). Domains are Basketball, Blocks, Calendar, Housing, Publications, Recipes, Restaurants and Social Net-
work.

ZH Avg. Ba. Bl. Ca. Ho. Pu. Res. Rec. So.

Baseline

Back-translation 48.1 62.3 39.6 49.8 43.1 48.3 51.4 29.2 61.2

Our model

DLF only 48.0 53.7 49.6 53.0 50.8 36.0 52.1 23.1 65.3
DLF +DNL 49.5 56.5 49.4 55.4 56.1 35.4 54.2 24.9 64.1
DLF +DNL + LP 52.7 59.1 50.1 67.9 54.5 41.6 59.6 20.8 67.6

Table 5: Denotation accuracy for Overnight (Wang et al., 2015) using the Chinese test set from Sherborne et al.
(2020). Domains are Basketball, Blocks, Calendar, Housing, Publications, Recipes, Restaurants and Social Net-
work.


