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1 Introduction

Datasets have long played a crucial role in dictat-
ing the pace of progress in NLP. Their function,
for most tasks, is largely two-fold: 1) to collect
data points (and their corresponding gold-standard
labels) on which statistical models can be trained,
and 2) to serve as benchmarks though which var-
ious models can be evaluated and compared. In
recent years, much research has been devoted to-
wards developing new datasets, tasks, and bench-
marks for NLP — so as to articulate the distin-
guishing aspects of a bevy of new neural models.
Syntactic parsing has remained an active area of
research in this regard, and Universal Dependen-
cies (UD) (Nivre et al., 2016, 2020) has emerged
as a crucial initiative within NLP, offering a set
of cross-lingually consistent annotation principles
that have since been adapted to 217 treebanks that
span 122 languages and 18 domains (version 2.9).

Though UD and other initiatives have aided in
driving recent advances in NLP, overall progress
has typically been measured via aggregate accu-
racy metrics, which provide little more than a bird’s
eye view into the data. In the era of deep learn-
ing, where popular models are notoriously opaque,
it has thus proven vital to study the contents of
datasets and identify aspects that may misrepre-
sent model performance. In this vein, numerous
studies have shown that the crowd-funded nature
of some popular NLP datasets makes them prone
to annotation artefacts that are readily exploitable
by neural models as heuristics (Kaushik and Lip-
ton, 2018; Gururangan et al., 2018; Poliak et al.,
2018; McCoy et al., 2019). With such insights
in mind, researchers have shifted their focus to-
wards the datasets instead of the models, propos-
ing general methods for exploring the former so
as to better understand the performance of the lat-
ter. Such approaches have drawn from, e.g., in-
formation theory (Perez et al., 2021; Ethayarajh
et al., 2022), item response theory (Rodriguez et al.,
2021; Vania et al., 2021), and model training dy-

namics (Swayamdipta et al., 2020). This work,
however, has predominately focused on classifi-
cation tasks and has proven difficult to extend to
other classes of problems, such as the structured
prediction tasks of UD.

In this paper, we perform an analysis of 88 Uni-
versal Dependencies (UD) treebanks through the
perspective of a popular parsing architecture —
namely that of Dozat and Manning (2016). As
opposed to much previous work, which prioritizes
metrics like LAS in order to build accurate parsers,
we aim instead to better understand the underly-
ing data, as well as how our parser interfaces with
it. To do so, we extend recently proposed dataset
analysis methods based on model training dynam-
ics (Swayamdipta et al., 2020), V-information (Xu
et al., 2020; Ethayarajh et al., 2022), and mini-
mum description length (Blier and Ollivier, 2018;
Voita and Titov, 2020; Perez et al., 2021) to the de-
pendency parsing scenario. In working with each
method, we formalize the following set of research
questions:

1. Which treebanks appear hard (or easy) to
parse, given a model’s confidence through-
out training, and variability therein?

2. Which treebanks contain the most (or least)
information that is actually usable by a parser,
with respect to a naive baseline?

3. Which treebanks are the most (or least) sam-
ple efficient, i.e. most easily fit by a parser,
irrespective of training set size?

2 Dataset Cartography

Dataset cartography (DC) consists of two compli-
mentary measures: Confidence (CONF) and Vari-
ability (VAR). CONF refers to the average proba-
bility assigned to a token wi by a model M (e.g. a
parser) after training for E epochs. VAR is corre-
sponding standard deviation of this value. If CONF

is high and VAR is low, wi is considered “easy to
learn”. Conversely, if both values are low, then



Figure 1: Left: Arc-level PVI density for Top-3 and Bottom-3 V-INFO treebanks, across arcs (labels omitted for
space). Right: Block-wise codelength (in bits) for Top-3 and Bottom-3 MDL treebanks, across arcs.

wi is considered “hard to learn”; such cases of-
ten correspond to annotation errors and various
other artefacts (Swayamdipta et al., 2020). We
find that DC, when applied to UD, is capable of
painting a nuanced picture of how easy or hard
treebanks might be to parse. In zooming in on the
three “easiest” treebanks — English Atis, Hindi
HDTB, and Japanese GSD — we observe that the
majority of arcs contained therein are trivially fit by
the parser. Conversely, the “hardest” treebanks —
Turkish IMST, Uyghur UDT, and Vietnamese VTB
— contain much variation, with Turkish exhibiting
a particularly high density of “hard to learn” arcs.

3 V-information

V-information (V-INFO) is an information-
theoretic measure introduced by Xu et al. (2020),
which quantifies the amount of “usable” informa-
tion that can be extracted by M from a dataset D.
V-INFO presupposes the use of two models: an
M trained on D in a straightforward fashion, and
a “baseline” model M ′ trained on a corrupted ver-
sion version of D (e.g. all input tokens replaced
with _). Given M and M ′, V-INFO is calculated
by taking the sum of differences between negative
log probabilities yielded by M ′ and M for each to-
ken wi ∈ D (the validation partition thereof). High
V-INFO values indicate that D contains much infor-
mation that cannot be inferred by naive baselines,
while low values indicate that M would not fare
worse than picking a class at random. We demon-
strate that V-INFO can reveal nuanced treebank
characteristics when applied to UD. For example,
Turkish Tourism yields a low V-INFO score due to
its limited genre, short sentence length, and persis-
tent placement of various words at fixed positions.

In contrast, treebanks like Latin LLCT and Ro-
manian SiMoNERo return high V-INFO scores,
indicating that they possess a varied distribution of
structures and vocabulary usage.

4 Minimum Description Length

Minimum Description Length (MDL) (Rissanen,
1978) is an information-theoretic measure that cap-
tures how well M can compress D. MDL can be
estimated via online coding (Rissanen, 1984; Blier
and Ollivier, 2018): a technique which splits D
into S blocks and measures the fit of M on each
successive block. Intuitively, MDL expresses the
ability of M to generalize with respect to D: mod-
els that learn efficiently from limited instances will
yield shorter codelengths (lower MDL). In our ex-
periments, English Atis and Japanese GSD return
the lowest MDL overall, indicating that they are
the most sample efficient. We attribute this to the
former’s limited genre and the latter’s tokenization
scheme. In general, we show that MDL correlates
strongly with morphological complexity metrics
across treebanks, indicating that it is influenced by
typological factors, vocabulary usage, and token
frequency.
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