Superframes for Consistent and Comprehensive Semantic Role Annotation

Kilian Evang Heinrich Heine University Düsseldorf Germany evang@hhu.de

Relevant UniDive working groups: WG1, WG2, WG3

1 Introduction

We present CRANS, a new annotation scheme for comprehensively labeling syntactic dependencies from predicates to dependents in running text with their semantic functions, or *roles*. CRANS is designed to be applied atop UD (de Marneffe et al., 2021), SUD (Gerdes et al., 2018), or EUD (Schuster and Manning, 2016), explicitly annotating the syntax-semantics interface rather than just semantics. An example of a UD tree enriched with CRANS annotations is shown in Figure 1. Although we use English examples in this abstract, CRANS is designed to be applied crosslinguistically. The vocabulary of CRANS consists of:

Core Roles There are only two core roles in CRANS: F (figure) and G (ground). A predicate that has any arguments must always have at least one core argument. This rule is meant to ensure consistent annotation and high inter-annotator agreement. What F and G mean exactly depends on the *superframe* of the predicate.

(1) a. Kim_G owns_{PSS} a house_F
b. Kim_F married_{SOC} Sandy_G

Superframes Each predicate instance is labeled with one of a handful of coarse frames, called *superframes*. CRANS aims to distinguish only as many superframes as necessary to give a clear mapping between arguments and core roles. Table 1 lists each superframe along with its definitions for F and G.

Derived Roles In addition to F and G, there is IG (initial ground). This is used for arguments that participate in the G role at the beginning of the scene and that either continue to do so or move away from this state. There is also the MG role for grounds that are "passed through".

(2) a. Kim_{IG} kept_{PSS} the money_Fb. Kim_{IG} lost_{PSS} the money_F

Kim owns a house NOUN VERB:PSS DET NOUN

Figure 1: UD tree enriched with CRANS semantic role annotation

- c. Kim_F divorced_{SOC} Sandy_{IG}
- d. Kim $_{IG}$ gave $_{PSS}$ Sandy $_G$ the house $_F$
- e. The noise_{IG} faded_{SCN}
- f. Kim_F went_{CNF} from the living room_{IG} through the door_{MG} into the kitchen_G

Modifier Roles CRAN's inventory of modifier roles is not much different from other schemes. Modifiers are dependents that are not selected for by the predicate, but can freely combine with all kinds of predicates. A preliminary list of modifier roles is given in Table 2.

(3) Kim_F went_{CNF} to Brazil_G last month_{TMP} because they needed_{XPL} a vacation

Mix-in Roles Arguments that are selected for by the predicate but are not core arguments are labeled with mix-in roles. These are just modifier roles prefixed with an X. Very common mix-in roles are XCAU (causer), XSND (sender), and XRCP (recipient).

- (4) a. $\operatorname{Kim}_{XCAU}$ broke_{STP} the vase_F
 - b. Kim_{XSND} talked_{MSG} shit_G about Sandy_F to Aubrey_{XRCP}
 - c. $\operatorname{Kim}_{XRCP} \operatorname{saw}_{MSG} \operatorname{Sandy}_F \operatorname{swim}_G$
 - d. Kim_{XRCP} searched_{MSG} the woods_{XLOC} for Sandy_F
 - e. Kim_{*IG*} paid_{*PSS*} a million dollars_{*F*} for the house_{*XAST*}

Aktionsart Apart from the IG/MG/G distinction, superframes abstract away from aktionsart. For example, states have the same superframes and roles as the events bringing them about, and attempts

Superframe	Description	F	G
WST	world state		
ACT	activity	actor	
EXP	experience	undergoer	
STP	state/property	entity in state/with property	
ASS	assignment	point	value
CMP	comparison	compared	reference
SUC	succession	successor	succeeded
QTY	quantity	of what	how much
CNF	configuration	smaller/peripheral entity	larger/central entity
ORL	organizational role	appointee	organization/job/responsibility
PSS	possession/control	possession	possessor
PWH	part-whole	part	whole
SOC	social	person	friend, relative, etc.
SCN	scene	participant	scene
MSG	message	topic	content

Table 1: Meaning of the F (figure) and G (ground) core roles depending on the superframe. When the semantic criteria do not distinguish F and G, F is the syntactically less oblique dependent.

and failures have the same superframes and roles as successes.

- (5) a. Kim_G owns_{PSS} a house_Fb. Kim_G bought_{PSS} a house_F
- (6) a. Kim_{XRCP} remembered_{MSG} Sandy_F
 b. Kim_{XRCP} forgot_{MSG} Sandy_F
 - c. Kim_F tried_{SCN} to sleep_G
 - d. Kim_F managed_{SCN} to sleep_G
 - e. Kim_F failed_{SCN} to sleep_G

Etc. We have created detailed guidelines for annotating less prototypical examples, including: nominal and adjectival predicates; non-roles for expletives and extended nuclei in multiword expressions; a uniform treatment of auxiliaries, light verbs, raising and control verbs; additional annotation of argument-argument relations such as control; and dual framing in case of uncertainty, secondary predicates, and idiomatic language.

2 Comparison

CRANS vs. other Frame-based SRL Schemes VerbNet (Kipper et al., 2008), FrameNet (Fillmore and Baker, 2009), PropBank (Palmer et al., 2005), and VerbAtlas (Di Fabio et al., 2019) all presuppose a (relatively) large frame lexicon. In our experience, lexicons have the problem of being perennially incomplete, and taking up much time to browse during annotation. VerbAtlas, like CRANS, makes an effort to limit the number of frames by grouping predicates together into frames with coherent rolesets. However, at 433 frames, it still requires much looking up. It also has a number of inconsistencies in role names and PropBank mappings, stemming from the semi-automatic creation process. CRANS aims to trade the rich ontology that especially FrameNet provides for ease and speed of annotation.

CRANS vs. Frameless SRL Schemes Semantic role vocabularies can be used without (explicit) reference to frames. For example, the Parallel Meaning Bank (Abzianidze et al., 2017) uses a variant of the VerbNet role inventory without frames. Framespecific numbered PropBank roles are also all annotated with "function tags", i.e., frame-independent role labels. In our experience, it is hard to apply such a scheme consistently, as it is often hard to decide whether something is an Agent or a Theme, or a Patient or a Theme or a Topic, without having a frame that specifies that. We feel that by forcing annotators to choose a superframe and defining the core roles and their relation to each other in each superframe, CRANS provides a better handle on choosing roles. Although also frameless, the adposition-focused SRL scheme SNACS (Schneider et al., 2018; Shalev et al., 2019) has strongly

Scene			
AST	asset		
BEN	beneficiary		
CAU	causer		
EXT	extent		
INS	instrument		
LOC	locus		
MNR	manner		
TMP	temporal		
Discourse			
CNC	concession		
CNT	continuation		
CTX	context		
ELA	elaboration		
RCP	recipient		
SND	sender		
XPL	explanation		
Constructional			
ANC	ancillary		
ATT	attribute		
DPC	depictive		
RSF	result: affected entity		
RSG	result: end state		

Table 2: Modifier roles, roughly divided into modifiers that specify further properties of a scene (Scene), those relating it to other scenes (Discourse), and Constructional ones giving rise to argument-argument semantic dependencies.

inspired CRANS's inventory of superframes and modifier roles. The most important difference is that we removed argument roles like Agent, Theme, or Source, which we see as ill-defined, and introduced roles like F and IG, which are well-defined within their superframes.

3 Limitations

CRANS is in an early stage of development and has yet to be evaluated in annotation experiments. With this poster, we would like to gather feedback and meet potential collaborators for such an endeavor.

Acknowledgements

We would like to thank the anonymous reviewers for their helpful feedback.

References

- Lasha Abzianidze, Johannes Bjerva, Kilian Evang, Hessel Haagsma, Rik van Noord, Pierre Ludmann, Duc-Duy Nguyen, and Johan Bos. 2017. The Parallel Meaning Bank: Towards a multilingual corpus of translations annotated with compositional meaning representations. In *Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers*, pages 242–247, Valencia, Spain. Association for Computational Linguistics.
- Marie-Catherine de Marneffe, Christopher D. Manning, Joakim Nivre, and Daniel Zeman. 2021. Universal Dependencies. *Computational Linguistics*, 47(2):255–308.
- Andrea Di Fabio, Simone Conia, and Roberto Navigli. 2019. VerbAtlas: a novel large-scale verbal semantic resource and its application to semantic role labeling. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 627– 637, Hong Kong, China. Association for Computational Linguistics.
- Charles J. Fillmore and Collin Baker. 2009. A frames approach to semantic analysis. In Bernd Heine and Heiko Narrog, editors, *The Oxford Handbook of Linguistic Analysis*, pages 791–816. Oxford University Press, Oxford, UK.
- Kim Gerdes, Bruno Guillaume, Sylvain Kahane, and Guy Perrier. 2018. SUD or surface-syntactic Universal Dependencies: An annotation scheme nearisomorphic to UD. In *Proceedings of the Second Workshop on Universal Dependencies (UDW 2018)*, pages 66–74, Brussels, Belgium. Association for Computational Linguistics.
- Karin Kipper, Anna Korhonen, Neville Ryant, and Martha Palmer. 2008. A large-scale classification of english verbs. *Language Resources and Evaluation*, 42:21–40.
- Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The Proposition Bank: An annotated corpus of semantic roles. *Computational Linguistics*, 31(1):71–106.
- Nathan Schneider, Jena D. Hwang, Vivek Srikumar, Jakob Prange, Austin Blodgett, Sarah R. Moeller, Aviram Stern, Adi Bitan, and Omri Abend. 2018. Comprehensive supersense disambiguation of English prepositions and possessives. In *Proceedings* of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 185–196, Melbourne, Australia. Association for Computational Linguistics.
- Sebastian Schuster and Christopher D. Manning. 2016. Enhanced English Universal Dependencies: An improved representation for natural language understanding tasks. In *Proceedings of the Tenth International Conference on Language Resources and*

Evaluation (LREC'16), pages 2371–2378, Portorož, Slovenia. European Language Resources Association (ELRA).

Adi Shalev, Jena D. Hwang, Nathan Schneider, Vivek Srikumar, Omri Abend, and Ari Rappoport. 2019. Preparing SNACS for subjects and objects. In Proceedings of the First International Workshop on Designing Meaning Representations, pages 141–147, Florence, Italy. Association for Computational Linguistics.