Transitions all the Way Down: From Characters to Full Document
Annotation in One System

Yuval Pinter
Department of Compuer Science
Ben-Gurion University of the Negev
Beer Sheva, Israel

Miryam de Lhoneux
Department of Computer Science
KU Leuven
Belgium

Working Groups 1 & 3

1 Introduction

Existing Natural Language Processing (NLP) sys-
tems that process raw text into complex linguistic
structures are built on what is known as the “NLP
pipeline”. A pre-processing step produces sen-
tences divided into tokens, then a Part-of-Speech
tagger is applied to this clean token representation,
followed by (a lemmatizer and) a syntactic parser,
followed by a semantic parser, followed by super-
sentential analysis such as a discourse parser, a
summarizer, or a coreference system (e.g., Straka
et al., 2016). While systems exist that fuse sev-
eral of these steps together to form, e.g. a joint
tagger-parser (Bohnet and Nivre, 2012), to the best
of our knowledge none has sought a single frame-
work that starts at the character level and annotates
an entire document in one pass.'

We propose a single transition-based model
to jointly perform multiple levels of the NLP
pipeline: tokenization, word segmentation, sen-
tence detection, part-of-speech tagging, lemmati-
zation, morphological tagging, syntactic parsing,
and discourse parsing. Our schema negates the
need for trained word-level embeddings or shared
tokenization modules, while also leveraging anno-
tated resources at the morphological and syntac-
tic levels. We have begun implementing a parser
and conducting experiments on several languages
where required resources are available including
Hungarian, English, Turkish, and Swedish; our re-
sults are still preliminary.

2 Framework Sketch

Our model starts at the character level and pro-
vides all levels of annotations for a typical NLP

1Of the tasks omitted in our effort, most notable is NER.
We intend to pursue it in future work.

pipeline, or more specifically, all levels of an-
notations contained in Universal Dependencies
(UD) treebanks (Nivre et al., 2020). It fol-
lows a transition-based shift-reduce mechanism,
where characters from the buffer are incrementally
shifted onto the stack, and occasionally merged
through reduce operations into objects belonging
to higher representational layers to ultimately pro-
duce annotations in the output structure. Each
representational layer is subject to its own actions
when corresponding members are exposed on the
stack. For example, when the top stack items are
words, syntactic tree operations (like in a classic
shift-reduce parser) are licensed for the next step.

2.1 Components

The most basic component of our model is the
character buffer, not necessarily limited to a
single sentence (since our model supports super-
sentential annotation). We require this buffer to
support lookahead of some (possibly constant)
number of characters ahead of our current loca-
tion, the exact amount of which can be determined
by the implementation details, and may also be af-
fected by incorporation of pre-processing such as
a bidirectional RNN pass over the data.

The other essential component of the parser is
a stack, whose elements may instantiate a mix
of different types as the parsing operation pro-
gresses: character elements are joined into mor-
phemes, which in turn join into words, which then
form the syntactic structure of the output.

The output annotations provided by the tran-
sition actions include not only dependency arcs
but also morphosyntactic descriptions (MSD) and
POS labels, corresponding to individual words.

form lemma pos head relation morphosyntactic attributes
1-3 BBTYM

1 B PREP 3 case

2 H DT 3 det

3 BTYM BYT NOUN O root Number=Plural;Def=Definite
4-5 HGDWLYM

4 H DT 5 det

5 GDWLYM GDWL ADIJ 3 amod Number=Plural;Def=Definite

Table 1: Desired tagged output for the Hebrew fragment ‘BBTYM HGDWLYM’.

2.2 Transitions

The basic operation, SHIFT, moves a character
from the buffer to the stack. In case of a non-
syntactic character encountered (typically a space,
but not all spaces), DISCARD is used to denote
an ignored character. Three distinct REDUCE
operations form morphemes, words, and tokens,
and place them on the stack, replacing their con-
stituents. Two of the REDUCE operations, namely
MORPH and WORD, produce an annotation for the
final output, corresponding to the layer of the re-
duced object—an MSD or a POS tag, respectively.
The role of REDUCE-TOKEN is to account for
multi-word tokens, and their creation does not en-
tail tree-level annotations. Two transitions, ARC-
LEFT and ARC-RIGHT, are responsible for the pro-
duction of the syntactic dependency tree. RED-
SENT is a super-sentential REDUCE operation re-
sponsible for discourse-level marking, if such ex-
ists in the data. It allows for annotation of a dis-
course marker signifying the relation between the
sentence and the one following it.

3 Walkthrough

The Hebrew sequence ‘BBTYM HGDWLYM’ ‘in
the large houses’* contains multiple syntactic de-
cisions that can help explain the workings of the
suggested model. First, it exhibits syntactic fu-
sion where the case marker ‘B’ ‘in’ and the defi-
nite marker ‘H’ ‘the’ are attached to the adjacent
content word. Moreover, the ‘B’ implicitly con-
tains a definite marker, not directly observable in
text but inferred by the rules of Hebrew definite
agreement and expressed when spoken. Finally,
the morpheme ‘YM’ ‘-p/’ present in both tokens is
a “conventional” plural marker. The desired out-
put is depicted in reduced CoNLL-U form in Ta-
ble 1.

Scanning from left to right, the sequence of

’Hebrew transliterated for convenience, character-to-
character.

actions taken by an oracle character-level parser
would be the following:

SHIFT, RED-MORPHj, RED-WORDpREP,
RED-MORPHpef=pefinite; RED-WORDpT, SHIFT,
SHIFT, RED-MORPH/ .ma=ByT’> SHIFT, SHIFT,
RED-MORPHNymber=Plurals RED-WORDNOUN,
ARC-LEFTpgr, ARC-LEFTcAsE, RED-TOK,
DISCARD, SHIFT, RED-MORPHpef=Definite
RED-WORDpT, SHIFT, SHIFT, SHIFT, SHIFT,
RED-MORPH[opuma=‘GDWL» SHIFT, SHIFT, RED-
MORPHNymber=Plurals RED-WORDADJ, ARC-
LEFTpgr, ARC-RIGHTsmop, ARC-RIGHTgooT,
RED-TOK, RED-SENTj

As morphemes are reduced, their MSDs are
accumulated and assigned to the content word
produced at the next RED-WORD. The lemmas
are produced by stem morphemes, with an open-
vocabulary value scheme for the Lemma attribute.
Note that these might not correspond to the exact
stem (see BT/BYT).

4 Model Implementation

Our parser implementation contains multiple
trainable distributed representations, for: (a) all
types of linguistic constituents (characters, mor-
phemes, words, tokens, sentences); (b) annotation
classes (POS tags, MSDs, dependency labels, dis-
course types); and (c) the current states of the var-
ious data structures (character buffer, lookahead
buffer, stack, trees).

We implement feedforward neural combiners
for the different representation layers, which oper-
ate once a REDUCE or ARC transition calls them.

The main challenge in creating an oracle for
our framework is aligning subword morphemes
with MSD annotations, for which we create rules
based on the MorphyNet resource (Batsuren et al.,
2021), available for about a dozen languages.

References

Khuyagbaatar Batsuren, Gdbor Bella, and Fausto
Giunchiglia. 2021. MorphyNet: a large multilin-
gual database of derivational and inflectional mor-
phology. In Proceedings of the 18th SSIGMORPHON
Workshop on Computational Research in Phonetics,
Phonology, and Morphology, pages 39—48, Online.
Association for Computational Linguistics.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and
labeled non-projective dependency parsing. In Pro-
ceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and
Computational Natural Language Learning, pages
1455-1465, Jeju Island, Korea. Association for
Computational Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Haji¢, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection.
In Proceedings of the Twelfth Language Resources
and Evaluation Conference, pages 4034—4043, Mar-
seille, France. European Language Resources Asso-
ciation.

Milan Straka, Jan Haji¢, and Jana Strakova. 2016. UD-
Pipe: Trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 4290-
4297, Portoroz, Slovenia. European Language Re-
sources Association (ELRA).

