Quantifying intra-linguistic diversity: Case study of multiword expressions

1. Objectives

Quantifying intra-linguistic diversity of multiword expression (MWE) in annotated text.
\square How can diversity be measured (2.)
$\square_{\text {}}$ validating (3.) diversity measures

2. Diversity

In a population of MWE occurrences I and MWE types T

$$
I \xrightarrow{\tau} T
$$

Never gonna give you up	\mapsto	$\{$ give, up $\}$
They gave up long ago	\mapsto	$\{$ give, up $\}$
Who r u, who r so wise in the ways of science	\mapsto	\{in, of, the, way, wise $\}$
Another one bites the dust	$\mapsto\{$ 位e, dust, the $\}$	

Diversity \rightarrow decomposed into:

Variety: How many types
$\rightarrow \quad$ Richness: $|\{\tau(i) \mid i \in I\}|=3$
$\rightarrow \quad$ Normalized Richness: $\frac{|\{\tau(i) \mid i \in I\}|}{|I|}=\frac{3}{4}$

Balance : How balanced are types frequencies (f)
With $E_{a, b}=\frac{N_{a}}{N_{b}}$, and $N_{a}=\left(\sum_{t \in T} f(t)^{a}\right)^{\frac{1}{(1-a)}}$
$\rightarrow \quad E_{1,0} \approx \frac{3}{2.58} \approx 0.86$
$\rightarrow \quad E_{2,1} \approx \frac{2.58}{2.27} \approx 0.88$

Disparity : How different are types from each other
Disparity are based on distance-like measure
Here a semantic space with: $\mathrm{d}(u, v)=(1-\cos (u, v)) \div 2$

Pretend semantic space of T

4

$$
\mathrm{D}=\frac{\sum_{(u v) \in T^{2}, u \neq v} d(u, v)}{|T|^{2}-|T|}=\frac{2 \cdot 0.2 \cdot 0.3 \cdot 0.01}{6}=0.17
$$

3. Impact of corpus size

Variety

Variety measures of verbal and non-verbal MWE in terms of sample size ($\%$ of sentences) of Sequoia Corpus
Both variety measures are affected by corpus size \Rightarrow corpus of different size cannot be compared.
Richness more interpretable \Rightarrow Richness preferred

Balance

Hypothesis: MWEs follow a Zipfian distribution (of pmf $Z_{s, N}(x)$)

$$
Z_{N, s}(x)=\frac{1}{x^{s} \sum_{n=1}^{N} n^{-s}}
$$

$N=$ number of types $ل \downarrow s \rightarrow$ distribution's curvature $\Rightarrow \frac{1}{s}$ acts as a balance measure \Rightarrow Balance measures should act as $\frac{1}{s}$
We fit s on our samples using LSE and compare $E_{1,0}$ and $E_{2,1}$ to $\frac{1}{s}$

Balance measures of verbal and non-verbal MWE in terms of sample size (\% of sentences) of Sequoia Corpus
$E_{1,0} \quad \rightarrow$ verbal MWEs more balanced than non-verbal MWE.
$E_{2,1}$ and $\frac{1}{s} \rightarrow$ verbal MWEs more balanced than non-verbal MWEs on small samples, and less balanced on large sample.
$E_{2,1}$ acts more like $\frac{1}{s}$ than $E_{1,0} \Rightarrow E_{2,1}$ preferred

Disparity

Early experiments \rightarrow D decreases with corpus size
In a closed space (e.g. $\frac{1-\cos (i, j)}{2}$):
\rightarrow Large $|T| \Rightarrow$ Dense concentration of types
\rightarrow High density \Rightarrow max D decreases $\Rightarrow D$ tends to decease
$\max D$ in a 2D space for up to 7 types

