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Abstract

Large language models (LMs) display impres-
sive performances and have captured the atten-
tion of the NLP community. In this article, we
focus on their cross-lingual generalization ca-
pabilities: We argue that machine translation
(MT) systems ought to provide a reasonable
comparison point, as they are expected to pro-
duce language-agnostic representations. We
summarize two sets of experiments: First, we
adopt a principled standpoint and train com-
parable MT and LM systems to contrast their
cross-lingual and monolingual downstream per-
formances; Second, we focus on publicly avail-
able pretrained LM and MT systems and study
whether continued training on MT helps or
hinders the emergence of cross-lingual capabil-
ities.

Relevant UniDive working groups: WG3

1 Introduction

The ability of pretrained language to generalize
across languages has been an active area of stud-
ies, with works ranging from linking typological
factors to cross-lingual performances (Lin et al.,
2019; Chai et al., 2022), to highlighting its benefits
for specific tasks such as text processing, senti-
ment analysis or summarization (Xu et al., 2022;
Wang et al., 2022). The successes of multilingual
pretrained language models (LM) on cross-lingual
tasks have been underscored time and time again
(Wu and Dredze, 2019, e.g.,), and appears all the
more surprising that they are often simply pre-
trained on datasets comprising multiple languages,
without explicit cross-lingual supervision (cf. for
instance Liu et al., 2020; although explicit supervi-
sion also exists, Xue et al., 2021). Explicit align-
ments such as linear mapping (Wang et al., 2019)
and L2 alignment (Cao et al., 2020) between source
and target languages do not necessarily improve
the quality of cross-lingual representations (Wu
and Dredze, 2020).

This is somewhat at odds with expectations
from earlier studies in machine translation (MT).
In particular, MT systems have had a historical

connection with the concept of an interlingua—
a language-independent representation space that
MT systems can leverage to perform transla-
tion (Masterman, 1961; Lu et al., 2018). As
such, MT models are expected to pick up on
language-independent semantic features (Tiede-
mann, 2018)—though in practice, this shared rep-
resentation space can be in a trade-off relationship
with performance, which benefits from a greater
separability of source language representations
(Chen et al., 2023, e.g.). It should also be noted
that previous studies have leveraged pretrained
encoder-decoder LMs to built effective MT models
(Liu et al., 2020; Tang et al., 2020): which sug-
gests that MT and LM are not entirely unrelated
tasks—although the evidence is conflicting here
again (Vázquez et al., 2021).

Research questions In short, this state of affairs
begs the question of whether MT systems do in
fact learn some form of implicit cross-lingual align-
ment. This prompts us to study specifically how
MT compares with multilingual LM when it comes
to learning cross-lingual representations. More nar-
rowly, we focus on verifying whether MT training
objectives do favor the emergence of cross-lingual
alignments more than LM objectives. We consider
two separate but related approaches to answering
this question: one where we adopt a principled per-
spective and learn strictly comparable models and
contrast their cross-lingual performances, and one
where we factor in the current state of the NLP re-
search landscape, and study how existing publicly
available MT models compare to publicly available
LM systems on cross-lingual tasks.

Findings Our preliminary findings based on pub-
licly available LM and MT models suggest that MT
is not a good continued objective for pretrained
multilingual LMs, as far as cross-lingual learning
is concerned. However, those public models are
trained with different corpora, and potential data
contamination is a concern. We will conduct a
more systematic analysis of the models trained
with a more controlled setting, including training



corpora, model architectures, and learning objec-
tives.

2 Methods and settings

From a purely engineering-focused standpoint, the
question of which of MT or LM is the most ap-
propriate pre-training regimens for cross-lingual
downstream application a priori is distinct from
knowing which model one ought to work with in
order to obtain higher performances for specific
tasks. In practice, more resources might have been
allocated to developing LM systems (or MT sys-
tems), making them a more appropriate starting
point for cross-lingual tasks.

We start our inquiry by adopting a principled
stance: We train strictly comparable models with
MT and LM objectives before contrasting their
performances on cross-lingual and mono-lingual
tasks. We choose UNPC (Ziemski et al., 2016)
and OpenSubtitles (Tiedemann, 2012) as the train-
ing corpora and consider six languages: Arabic,
Chinese, English, French, Russian, and Spanish.
To allow a systematic evaluation, we train models
with various neural network architectures and learn-
ing objectives: (1) Masked Language Modeling
(MLM) with the BERT architecture (Devlin et al.,
2019); (2) Causal Language Modeling (CLM) with
the GPT-2 architecture (Radford et al., 2019); (3)
Translation Language Modeling (TLM) with the
GPT-2 architecture, where the input is the concate-
nation of a language pair following a setup simi-
lar to Conneau and Lample (2019); (4) Denoising
Sequenece-to-Sequence Langauge Modeling with
BART architecture (Lewis et al., 2020); (5) Ma-
chine Translation (MT) with the classic encoder-
decoder transformer architecture (Vaswani et al.,
2017) and the BART architecture (Lewis et al.,
2020). We have completed the training for MLM,
CLM, TLM, and MT with a 6-layer encoder and
6-layer decoder. Other models are being trained.

3 Evaluation and preliminary results

We aim to evaluate models both publicly avail-
able and trained by us on various cross-lingual
and monolingual NLP tasks. We start with cross-
lingual tasks and plan to expand our evaluation to
monolingual tasks. We will also evaluate machine
translation performance and study the representa-
tion learned by different architectures and learning
objectives once the model training has been com-
pleted. Here, we report some of our preliminary

results.

3.1 Cross-lingual tasks and results

We consider cross-lingual NLP tasks, where model
training for downstream applications is done in
one language (usually English), and the trained
model is evaluated in languages other than the lan-
guage used for training. We use the XGLUE bench-
mark (Liang et al., 2020), a cross-lingual evalua-
tion benchmark, and conduct our evaluation on
natural language understanding tasks. The specific
tasks consist of Named Entity Resolution (NER)
(Sang, 2002; Sang and Meulder, 2003), Part of
Speech Tagging (POS) (Zeman et al., 2020), News
Classification (NC), XNLI (Conneau et al., 2018),
PAWS-X (Yang et al., 2019), Query-Ad Match-
ing (QADSM), Web Page Ranking (WPR), and
QA Matching (QAM). Table 1 shows the overall
performance by averaging the scores of each lan-
guage. XLM-R displays the highest performances
on 6 out of 8 tasks, and mBART obtains the best av-
erage score on the last two. In most cases, models
continually pretrained on MT (i.e., mBART m2o,
mBART o2m, and mBART m2m) perform worse
than language models (i.e., mBART).

Model Tasks
NC XNLI PAWS-X QAM QADSM WPR NER POS

LM
mBERT 81.3 65.2 86.6 64.6 63.1 74.4 77.5 76.0
XLM-R 82.1 73.5 88.9 67.4 66.9 75.3 78.7 79.7
mBART 82.1 67.6 89.2 67.8 65.5 74.7 77.7 72.7

MT NLLB 600M 76.0 68.3 73.4 61.5 63.9 73.7 54.2 71.4

CP
mBART m2o 80.4 65.9 85.6 63.9 63.9 73.7 61.5 70.8
mBART o2m 65.4 48.1 81.7 58.4 62.7 73.2 55.1 55.7
mBART m2m 78.3 60.2 87.2 63.2 62.8 73.7 71.9 69.7

Table 1: Average performance on cross-lingual tasks.
We use the base architecture for mBERT and XLM-R.
mBART scores are derived from the 12-layer encoder.

4 Conclusion

This proposal introduces our ongoing work. Our
preliminary study on publically available models
shows that continued training with machine transla-
tion models is beneficial for cross-lingual transfer.
However, the preliminary study is based on mod-
els trained with different corpora. We will study
a more controlled setting to fairly compare the
performance of language and machine translation
models and investigate the distributed represen-
tations learned by different models and learning
objectives.
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