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1 Introduction

The exponential growth of Large Language Mod-
els (LLMs) has taken the world of Natural Lan-
guage Processing (NLP) by storm. Despite their
capability of generating impressively fluent text,
LLMs still exhibit gaps in producing factual, co-
herent, and relevant outputs in complex scenar-
ios (Augenstein et al., 2023). To mitigate this issue,
the research community has introduced techniques
for grounding LLMs in knowledge graphs (KGs),
where each node usually represents a concept (e.g.,
universe, weather, or president) or a named en-
tity (e.g., Albert Einstein, Rome, or The Legend
of Zelda), and each edge between two nodes rep-
resents a fact (e.g., “Rome is the capital of Italy”
or “The Legend of Zelda is a video game series”).
The synergy between KGs and LLMs has become
successful for two main reasons: their relational
information, i.e., the links between nodes, and their
textual information, i.e., the lexicalizations of the
concepts and entities.

However, despite the advances in grounding lan-
guage models to KGs (Schneider et al., 2022),
these efforts are significantly limited by the stark
discrepancy between English and non-English tex-
tual information (Kaffee et al., 2023). This dis-
crepancy manifests on two fronts: a disparity in
coverage, where non-English languages are limited
in the number of entities for which at least one lex-
icalization is provided, and a disparity in precision,
as the quality of non-English textual information
is usually lower. This gap in data coverage and
precision severely limits the applicability of re-
cent approaches to multilingual applications (Peng
et al., 2023).

In this paper, we present our contributions
aimed at addressing the problems of coverage and
precision of textual information in multilingual
KGs (Conia et al., 2023), with a particular focus
on Wikidata, one of the most widely used KGs in
the NLP community. More specifically, we ana-
lyze the gap between English and non-English lan-

guages in the entity names in Wikidata, describe a
novel benchmark for evaluating automatic systems
on narrowing this gap, present a methodology to
mitigate the above-mentioned issues, and discuss
how our efforts can improve a set of downstream
applications. With this discussion, we aim to stimu-
late conversations on novel research directions and
foster future research on bridging the gap between
English and non-English languages in KGs.

2 Measuring the Inter-Linguistic Gap in
Multilingual Knowledge Graphs

While relational information in KGs is usually
language-agnostic (e.g., “AI” is a field of “Com-
puter Science” independently of the language we
consider), textual information is usually language-
dependent (e.g., the lexicalizations of “AI” and
“Computer Science” vary across languages). With
the growing number of languages supported by
KGs, it becomes increasingly challenging for hu-
man editors to maintain their content up-to-date in
all languages (Kaffee et al., 2019). Therefore, it
is important to invest in developing and evaluat-
ing systems that can support humans in curating
textual information across languages.

Coverage. Ideally, we would like every entity in
Wikidata to be “covered” in all languages, i.e., we
would like Wikidata to provide at least one entity
name for each language supported by the knowl-
edge graph. However, this is not currently the case
for Wikidata, as we can observe in Figure 1, which
provides an overview on the availability of entity
names in nine non-English languages.

Precision. While achieving inter-linguistic parity
in terms of coverage of entity names is fundamen-
tal, another crucial aspect is the accuracy of such
information. It is not uncommon to find inaccurate
textual information in Wikidata, including human
mistakes (e.g., spelling errors), outdated entries
(e.g., name changes), and under-specific informa-
tion (e.g., generic job roles, such as “musician”
instead of “pianist”).
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Figure 1: Coverage of non-English entity names compared to English in Wikidata. Best seen in color.

AR DE EN ES FR IT JA KO RU ZH All

Entities 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 10,000
Entity names in WikiKGE-10 4,213 3,498 2,837 4,320 3,548 3,156 2,999 3,874 3,901 4,088 36,434
- Entity names in Wikidata 2,521 2,336 2,090 2,732 2,330 1,840 2,235 2,136 2,706 2,569 23,495
- Entity name errors in Wikidata 320 491 219 571 530 236 486 329 507 830 4,663

Table 1: Overview of WikiKGE-10, which features 10 languages – Arabic (AR), German (DE), English (EN),
Spanish (ES), French (FR), Italian (IT), Japanese (JA), Russian (RU), simplified Chinese (ZH).

WikiKGE-10. To assess the severity of the
above-mentioned issues, we created WikiKGE-10,
a novel benchmark to evaluate systems for improv-
ing the quality of textual information in multilin-
gual KGs. WikiKGE-10 covers 10 diverse lan-
guages – English, Arabic, German, Italian, French,
Spanish, Korean, Japanese, Russian, and Chinese
– and provides more than 35 thousand manually-
graded entity names for 1000 entities in each of
the 10 languages, as shown in Table 1. The cre-
ation of WikiKGE-101 is especially relevant for
UniDive in the context of WG1 for corpus anno-
tation of complex multilingual datasets and WG4
for promoting truly inter-linguistic resources, and
future work may aim at extending and adapting
this methodology for low-resource languages.

3 Bridging the Inter-Linguistic Gap in
Multilingual Knowledge Graphs

A key objective of our work is to also evaluate the
capability of three broad categories of approaches
that can be applied to bridge the inter-linguistic
gap in multilingual KGs, namely, machine trans-
lation (MT), web search (WS), and LLMs. These
three categories are often strong candidates for
the development of multilingual technology tools,
which is the scope of WG3. In our experiments,
we observe that MT with NLLB-200 (Costa-jussà
et al., 2022) (41% in coverage; 58% in precision),
WS with Google Web Search (28% in coverage;
45% in precision), and LLM prompting with GPT-
4 (42% in coverage; 58% in precision) struggle to
generate high-quality entity names in the ten lan-

1https://github.com/apple/ml-kge

guages of WikiKGE-10. To address this issue, we
also introduce M-NTA (Multi-source Naturaliza-
tion, Translation, and Alignment), a novel method
for combining the predictions from MT, WS, and
LLMs. M-NTA shows promising gains (53.9% in
coverage; 80.1% in precision), demonstrating that
combining knowledge across languages is essential
to improve the quality of language resources.

4 Impact on Downstream Applications

Finally, our endeavors also include an investiga-
tion on the impact of improving the textual infor-
mation provided by KGs on a set of three down-
stream tasks, namely, multilingual Entity Linking
(MEL), multilingual Knowledge Graph Comple-
tion (MKGC), and multilingual Knowledge-Graph
Question Answering (mKGQA). For each of these
tasks, we measure the performance of a system in
two settings: i) using the original textual data (en-
tity names and descriptions) from Wikidata; ii)
using the textual data from Wikidata enhanced
with M-NTA (see Section 3). Our experiments
show that increasing the quantity and quality of
textual information in a multilingual KG improves
the performance of mGENRE (De Cao et al.,
2022) for MEL by 1.2% points in F1 score and
AlignKGC (Chakrabarti et al., 2022) for MKGC
by 1.3% in MRR, while decreasing the number of
unanswerable questions by 36.8% in the MKQA
benchmark (Longpre et al., 2021) for mKGQA. We
provide more details on the experimental results in
Conia et al. (2023). We hope our contributions to
these three tasks will encourage future studies on
the potential impact of KGs in other areas.

https://github.com/apple/ml-kge
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