Standardizing Annotations in Turkic Languages

Objective: Standardize annotations in Universal Dependencies treebanks of Turkic languages.

Introduction:

- Growing number of treebanks in UD.
- Importance of annotation consistency.

UD Turkic Workshop 2023 (UDTW23):

- September 2023, Istanbul.
- Discussions on issues and examples.

Issues Discussed:

- Tokenization, tense/mood tags, oblique/object distinction.
- Question particle, code switching, transcription, pronominalized nouns.

Conclusions:

- Workshop as a catalyst for unified annotation approach.
- Future steps: comprehensive paper on issues and decisions.

References and Acknowledgements: See poster for details.

Annotation of MWEs and NEs in the Serbian extension of ELEXIS-WSD:

 comparisons, solutions and open questions1. The extension of ELEXIS-WSD

- automatically translated SS, checked, proofread; automatically tokenized, lemmatized, POS-tagged, manually corrected.
To do:
- annotation (MWEs, NEs \& syntactic)
- linking with the sense repository.
- 2. All MWEs \& NEs from the WSD automatically translated into SR.
- lingua franca (6 lang. sets)
- 'Greece' the most freequent NE

3. The comparison of MWEs \& NEs accross languages

- automatic translation of MWEs sometimes imprecise: издигам се (вG) nastati 'become' (*ustati (SR) 'get up')
- sometimes the translation of MWEs was good, but not annotated in SSS (društvena mreža 'social network')
- the lack of annotation is not unusual in other sets: heavy water (En) \& тежка вода (BG) weren't annotated neither.

Towards a Dutch Parseme Corpus (WG1)

Gosse Bouma Jan Odijk Carole Tiberius
University of Groningen Utrecht University Dutch Language Institute

Automatic Conversion
Light Verb Constructions

Results

Class	Alpino	LassySmall
VPC	2937	1025
IAV	1372	570
VID	1347	419
LVC	354	98
IRV	188	90
MVC	41	4
Total	6239	2206

Funded by

Objectives

- Practical:
$>$ To build a bilingual corpus that demonstrates the syntactic realisation of the conceptual description of verbs in English and Bulgarian.
$>$ To combine information from various resources for the extensive semantic and syntactic description of verbs.
Theoretical:
$>$ To study universality and the possible cross-language linking and transfer of information (English- Bulgarian).

For English:

* 13,295 annotated examples
* 3,577 different valence patterns

For Bulgarian (work in progress):

* 2,050 annotated examples
* 272 different valence patterns

Corpus resources

$\left[\begin{array}{lll}{[\text { дали } \quad \text { може да си купи цигари }} &]_{\text {MESSAGEClouse }} \\ \text { [whether can } & \text { to himself buy cigarettes }]_{\text {MESSAGEClouse }} \\ \text { [whether he could buy some cigarettes. } &]_{\text {MESSAGEClouse }}\end{array}\right.$

A Constructicon for Universal Dependencies
 Joakim Nivre

Predicate Nominal Construction

UniDive

Universal Dependencies Treebank for Standard Albanian

Nelda Kote ${ }^{1}$, Anila Çepani Sema², Alba Haveriku ${ }^{1}$
${ }^{1}$ Polytechnic University of Tirana, Tirana, Albania
${ }^{2}$ University of Tirana, Tirana, Albania

CONTRIBUTION

> A UD treebank for the Standard Albanian language, created in collaboration between linguistics and information technology experts.
> 25,000 tokens, 1,300 sentences.

ANNOTATED CORPORA

$>$ Sentence segmentation;
$>$ Words segmentation within a sentence;
$>$ Lemmatization;
$>$ Part-of-speech tags;
$>$ Morphological features;
$>$ Syntactic annotation.

Creativity, productivity and diversity: The case of Hebrew possessive constructions

Ittamar Erb \& Nurit Melnik
The Open University of Israel

Goals:
Predict construction extensibility:
i. \quadmodel construction diversity as attested in linguistic corpora.
ii.predict speakers' evaluation of coinages: unattested combinations of constructions with lexical items.

Two competing constructions:

Diversity measures: \quad Variety | Balance | Disparity

Balance: Type-token ratio			
Spoken		Written	
prep.	suff.	prep.	suff.
0.438	0.320	0.890	0.319

Disparity: mean distance of lemma vector from centroids in a Semantic Vector clusters

UniDive
$2^{\text {nd }}$ General Meeting University of Naples "L'Orientale Naples, Italy, 8-9 February 2024

REVITALIZING THE HISTORICAL ROMANIAN TEXTS WITH CYRILLIC SCRIPTS

CAFTANATOV OLESEA, MALAHOV LUDMILA AND BUMBU TUDOR
Moldova State University, Vladimir Andrunachievici Institute of Mathematics and Computer Science

The Digitization Platform Architecture:

The Challenges:

We researched various types of historical documents such as: manuscripts, religions books, dialectal text and others. The endeavor to address the linguistic heritage of Romanian history involves tackling several specific challenges, including:

1) dealing with a multitude of language evolution periods;
2) coping with the scarcity of widely available resources;
3) managing the diverse array of alphabets used in historical printings, including mixed Cyrillic-Latin "transition alphabets";
4) overcoming the absence of reliable tools for accurately recognizing Cyrillic letters from various historical eras;
5) addressing the shortage of lexicons suitable for the time periods of these resources.

Жбліетта, арътьпndвсе іар ла *ереастръ. . XIX
Tpeĭ ворве ^пкъ, iбвіте $\mathbf{P}_{0 \text { meo, }}$ mi anol̆ adieo, century, adieo. Dака ведеріле аторвлві̆ твб̆ сжит вреdniчe alphabet Уника кестнуне, каре требуе резолватэ, ну аре дежа нич о легэтурэ ку кэрэмизиле - кыт де маре поате фи сума нумерелор XX Century

The "tongueprint" as language identification tool: Elaborating the proof-of-concept

When was the great age of Latin-Greek bilingualism?

Raf van Rooy, Flavio Massimiliano Cecchini, Isabelle Maes (KU Leuven)

Enhancing Interoperability for Under-Resourced Languages

integnating tbX
exglish-lithuanian belongs exchangetMX antootation nesounces ${ }_{3}$ corpora

skos:concept

 corpus- Languages: Lithuanian - English
- Data: cybersecurity domain
1)lexicon (terminology: TBX)

2) corpora (parallel: TMX / annotated: CoNLL)

- Challenge: Publish that such that
1)All data can be easily re-used

2) We integrate lexical data, linguistic annotations and parallel corpus
3)We access / query / interlink / process all data with off-the-shelf technology

- UniDive: WG2 (mostly)
- Status: On-going

We have a solution that works nicely :)
for us ..., but
1)Can we do better?

Can we improve data modelling?
2)Can we do more?

What needs to be done to apply this to other use cases? Where would it be beneficial?

Phases of Egyptian

Egyptian is one of the longest lived languages in history. This Afroasiatic language knew the following phases:

1) Old Egyptian (ca. 2700-2000 BC)
2) Middle Egyptian (ca. 2000-1400 BC)
3) Late Egyptian (ca. 1300-700 BC)
4) Demotic (7th century BC to 5 th century BC)
5) Coptic (4th to 14th century CE)

Aim of this research work

It is a semantic and syntactic analysis of Old Egyptian Multiword EXPRESSIONS (MWEs) consisting of a head word $+i b$ "heart".

Old Egyptian uses the noun "heart" with a metonymic meaning to form MULTIWORD EXPRESSIONS as do some modern languages, for example:
"Listen to your heart" / (G.) "Höre auf dein Herz" / (Sp.) "Escucha a tu corazón"

It is an opportunity to check the validity of the universal categorization of MWEs based mostly on modern Indo-European languages.

Applying the definition of a MWE to Old Egyptian (see Savary et al. 2018: 92-93 and Baldwin/Kim 2010: 269)

A MWE is a sequence of words with the following properties:
a) It shows some degree of orthographic, morphological, syntactic and semantic idiosyncrasy.
b) It has at least two lexicalized components including a head word and another syntactically related word.

Typology

Old Egyptian MWEs consisting of a head word $+i b$ can be classified into:

1) Nominal Multiword Expressions (NMWEs) if the head word is a noun. There are two types of NMWEs:
a) Noun/infinitive $+i b$.
b) Adjective/participle $+i b$. This type corresponds to the Sanskrit construction known as bahuvrīhi.
2) Prepositional Multiword Expressions (PMWEs) if the head word is a preposition.
3) Verbal Multiword Expressions (VMWEs) if the head word is a verb. There are two types of VMWEs:
a) Light-verb constructions (LVCs).
b) Verbal idioms (IDs).

The poster shows one of the earliest occurrences of MWEs in a cross-linguistic perspective. It also contains a list of $\mathbf{6 3}$ ib-MWEs in Old Egyptian.

Idiosyncrasy of Old Egyptian MWEs

A word stem can be used in different types of MWEs

1) A verb stem in a VMWE can be transformed into an infinitive in a NMWE.
2) Most of NMWEs derive from a verb stem.
3) A preposition in a PMWE can be used as a nisba adjective in a NMWE.
4) The meaning of a MWE can change due to syntactic reasons.

An Empirical Study of Multilingual Representations from Language Modeling and Translation

- a principled standpoint and train comparable MT and LM systems to contrast their cross-lingual and monolingual downstream performances;
- an empirical study on publicly available pretrained LM and MT systems and study whether continued training on MT helps or hinders the emergence of cross-lingual capabilities.
- Data: UNPC (Ziemski et al., 2016) and OpenSubtitles (Tiedemann, 2012)
- Languages: Arabic, Chinese, English, French, Russian, and Spanish
- Models
(1) Masked Language Modeling (MLM) with the BERT architecture (Devlin et al., 2019);
(2) Causal Language Modeling (CLM) with the GPT-2 architecture (Radford et al., 2019);
(3) Translation Language Modeling (TLM) with the GPT-2 architecture, where the input is the concatenation of a language pair following a setup similar to Conneau and Lample (2019);
- Denoising Sequenece-to-Sequence Langauge Modeling with BART architecture (Lewis et al., 2020);
(3) Machine Translation (MT) with the classic encoder-decoder transformer architecture (Vaswani et al., 2017) and the BART architecture (Lewis et al., 2020).

Babelscape

Creating a Multilingual Wide-Coverage Multi-Layered Semantically Annotated Corpus

S. Conia, E. Barba, A. Carlos Martinez Lorenzo, P. Huguet Cabot, R. Orlando, L. Procopio, R. Navigli

Objective

* A uniform linguistic description focusing on:
> representation of the structural, morphological, morphosyntactic, word-order, etc. features of Bulgarian MWEs;
> extension to MWEs for other languages;
$>$ with a view to the automatic recognition and annotation of MWEs in running text.
The lexicon includes:

over 10,000 nominal MWEs > including 5,000 NEs;	Description of verbal MWEs		
	BG: удрям джакпота - EN: hit the jackpot 'succeed by luck'		
> 1,200 light verb constructions;	Synset ID / MWE ID	eng-30-02524739-v / bg_2291	
> 1,800 verbal idioms;	MWE lemma / Abstract lemma	удрям джакпота / удрям джакпот	
	Morphosyntactic features	удрям.V_IMPERF_r1s джакпота.Nsh	
	Head and head inflection type	удрям.V_IM_TT_S3_01	
Nominal MWEs with validation of forms from corpora	Head restrictions	none	
	Dependent and dependent restrictions	джакпота / fixed; \mathbf{N} (umber) = s; \mathbf{D} (efiniteness) $=\mathrm{h}$	
\therefore. nuwer mex NM	Syntactic structure	Constituent: V N(P) I UD: V + obj	
	Possible modifiers of the head	regular	
- anutare numu NMmed	Possible modifiers of dependent	regular; $\mathrm{A}(\mathrm{P})$; $\mathrm{Ex} .:$ удрям големия/Ash джакпот/Ns0	
	External elements	regular (question particle \| subj	AdvP...)
	PARSEME type	VID	
- ${ }^{\text {Nppd }}$	Register and connotation	Colloquial; $\mathbf{- 0 . 1 2 5 + 0 . 2 5}$	
	Derivational relations	удряне на джакпота	

developped in SUD
 (Surface-syntactic UD)
 converted in UD
 (Universal Dependencies)

144 sentences

3279 tokens
glossed and translated in French

TAM particles

Double object construction Serial Verb Construction Relative clause Determiner

The first Haitian Creole treebank

Sylvain Kahane, Claudel Pierre-Louis, Sandra Jagodzińska, Agata Savary

'Many people say that uncertainty is a problem for them.', lit. gives them head-change

MULTINCI [WIP] - A MULTILINGUAL NOUN COMPOUND IDIOMATICITY DATASET

NCTTI

- The Noun Compound Type and Token Idiomaticity dataset [7]:

280 English (en) and 180 Portuguese (pt) nominal compounds (NCs).

- Human annotated in three context sentences (type and token-level annotation).
- PROs: effects of context on annotation judgements, comparison for language models

LANGUAGES

- English (en):
- Cleaned \& updated context sentences
- Extended compound list to increase potentially idiomatic expressions
- Romanian (ro):
- Test case for protocol
- 260 NCs
- 36 directly equivalent to en; 39 exclusive to Romanian, and 185 that have en translations (not part of the original NCTTI)
- Georgian (ka), Irish (ga):
- Initial work underway (funded by UniDvie STSMs)
- Modern Greek (el), Ukrainian (uk), Brazilian Portuguese (pt-br): - Potential collaborations identified

MULTINCI - OBJECTIVES

- Extended NCTTI dataset having core NCs common cross-linguistically, as well as language-specific compounds.
- Include languages with limited MWE resources.
- Increase cross-lingual applications by having correspondences across languages.

FUTURE WORK

- Protocols to be refined and completed.
- Data collection, translation and its annotation for in-progress and planned languages.
- Annotations from human volunteers.
- Extend MultiNCI to more languages and their varieties
- Collaborations welcome
- See UniDive STSM call REFERENCES

Morpheme-level Coreference Annotations for Pro-dropped Languages

Motivation and Goal:

- Coreferential relations of dropped pronouns is necessary for Pro-Dropped languages in Coreference Resolution
- Null-subjects and omitted possessive pronouns
- Information about dropped pronouns are easily deducible from morphology, morphemes.
- Representation and Evaluation Scheme

Sen [benim] anne[m]in geldiğ[i]ni gördü[n] mü?
Sen benim annemin geldiğini gördün mü?
You my mother came see_did
Did you see the coming of my mother ?

Approach:

- Each pronominal marker ~ coreferential mention

Did you see the coming of my mother ?

- `Possessive marker' for nouns, and `Personal marker' for verbs.
- No added any artifically inserted token (e.g. empty node)
- Eliminates difficulty in determining the most accurate and natural position of the empty node in the sentence
- Validated on Turkish Coreference Resolution

Key Observations:

- Representation Scheme: Multiple annotation over a single token is allowed, no need to add artificially inserted token.
- Evaluation Scheme: Pre and post-processors to enhance available CR evaluator to cover dropped pronouns (i.e., multiple annotations over a single word) are developed.

Adding Semantics to UD markers Tudor Voicu, Verginica Barbu Mititelu

- focus on functional MWEs: conjunctions
- consistent annotation of multiword conjunctions in a UD treebank
- adding a semantic layer to the UD treebank using PDTB 3.0 inventory of discourse relations

The Philotis Platform: Empowering Low-Resource Language Processing

Vivian Stamou Vasileios Arampatzakis Dimitrios Karamatskos Vasileios Sevetlidis Nicolaos Valeontis Stella Markantonatou George Pavlidis

Philotis web-based platform:

- Full pipeline for speech-, image- and text-to-text development of raw and annotated corpora and models (UD-framed)
- Key-board development facility
- Addressed to language specialists with varying technical expertise
- Openly available technology

WG4

$2^{\text {nd }}$ General Meeting
University of Naples "L'Orientale Naples, Italy,
8-9 February 2024
https://unidive.lisn.upsaclav.fr/
Après Toi: Scoring Systems based on Dataset Votes
Yuval Pinter
Ben-Gurion University

SMELEL

The Problem

- When running a multi-dataset competition between systems, we use the averaging aggregate metric for deciding the winner
- On one hand, this ensures that small datasets, typically representing low-resource languages, are viewed as equivalent to large datasets
- On the other hand, language differences may lead to lower points of saturation for some, leading to focus work on "easy" languages (or on one's "comfort zone")

Voting-based scoring

- Each dataset has a budget of "votes" which it distributes among the systems
- In Eurovision-style voting (ESC):
- Top system gets 12 points
- \#2 gets 10
- \#3 gets 8, and \#4-\#10 get one point less each
- Final scores are the accumulations from the datasets

The Alternative(s)

..

System 1 wins on the average metric, but is it really the best?

	Dataset A	Dataset B	Dataset C
System 1	90	53	79
System 2	80	56	82
System 3	70	57	83
System 4	60	58	84

