User Tools

Site Tools


wg3:wg3_meeting_2025-03-12_edit

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
wg3:wg3_meeting_2025-03-12_edit [2025/03/12 06:30] – created gulsen.eryigitwg3:wg3_meeting_2025-03-12_edit [2025/03/12 11:40] (current) gulsen.eryigit
Line 3: Line 3:
  
 Subtask reports: Subtask reports:
-Task 3.2: Shared task on morphosyntactic parsing +  * Task 3.2: Shared task on morphosyntactic parsing 
 (Omer Goldman, Leonie Weissweiler, Reut Tsarfaty) (Omer Goldman, Leonie Weissweiler, Reut Tsarfaty)
-Google group +[[https://groups.google.com/g/msp-sharedtask-2025-participants|Google group]] 
-Training data and future evaluation code +[[https://github.com/UniDive-MSP/MSP-shared-task|Training data and future evaluation code]] 
-UniDive webpage +[[https://unidive.lisn.upsaclay.fr/doku.php?id=other-events:msp|UniDive webpage]] 
-Task 3.4: Evaluation campaign PARSEME 2.0+  Task 3.4: Evaluation campaign PARSEME 2.0
 (Manon Scholivet, Agata Savary) (Manon Scholivet, Agata Savary)
-Taks 3.5: Evaluation campaign AdMIRe+  * Taks 3.5: Evaluation campaign AdMIRe
 (Thomas Pickard, Aline Villavicencio) (Thomas Pickard, Aline Villavicencio)
 General discussion General discussion
  
 Next meeting: May 6, 12.00 CEST (on line) Next meeting: May 6, 12.00 CEST (on line)
-List of Participants +====== List of Participants ======
-Gülşen Eryiğit (chair) +
-Joakim Nivre (co-chair) +
-Roberto Antonio Díaz Hernández +
-Ali Basirat +
-Csilla Horváth +
-Manon Scholivet +
-Rob van der Goot +
-Agata Savary +
-Ranka Stanković +
-Thomas Pickard +
-Aline Villavicencio +
-Tanja Samardzic +
-Dawit J +
-Alina Wróblewska +
-Luka Terčon +
-Olha Kanishcheva +
-Dan Zeman +
-Takuya Nakamura +
-Federica Gamba +
-Carlos Ramisch +
-Flavio Massimiliano Cecchini +
-Gosse Bouma +
-Rusudan Makhachashvili +
-Voula Giouli +
-Ebru Çavuşoğlu +
-Omer Goldman +
-Reut Tsarfaty +
-Chaya Liebeskind +
-Faruk Mardan +
-Adriana Pagano +
-Ilan Kernerman +
-Kutay acar +
-Ludmila Malahov +
-Teresa Lynn +
-Lucía Amorós-Poveda +
-PARSEME shared task (Manon, Agata) +
-subtask 1 (PARSEME 2.0) +
-quite established framework +
-novelty: non-verbal MWEs, diversity measures +
-subtask 2 (MWE generation) +
-given a context with eliminated MWEs, restore this MWE +
-Problems: how to evaluate the system +
-[ALINE] Consider taking into account the level of difficulty of the items? For example, some items will be more ambiguous and more difficult to determine +
-[JOAKIM] It is unclear which capacity of models we test +
-[TOM] Very difficult to evaluate, even manually. +
-subtask 3 (MWE comprehension/disambiguation) +
-Given a sentence and a span of a potential idiomatic expressions, classify it as idiomatic, literal or coincidental +
-[GULSEN] There are some datasets for this task. Maybe the 3rd category complicates the things. +
-[JOAKIM]  +
-[TOM] The same as SemEval 2022 (EN, PT, Galician). There are artefact issues (the models don’t really pay attention to the context). +
-subtask 4 (paraphrasing) +
-Given a sentence, rephrase it so that there are no MWEs +
-[AGATA] The input should be raw text, without a span. Objective: simplification of a text. +
-[JOAKIM] The most natural tasks among (2, 3 and 4). Close to what people do with LLMs.  +
-Can we avoid doing manual evaluation? (LLM as judge) +
-[TOM] His favorite +
-[ALINE] They work with questionnaires for humans for this problem. There is a synonym dataset. Another task: collect sentences with synonyms of MWEs. +
-[ALINE] Sometimes the simplest way to express a meaning is with a MWE. +
-Questions: +
-Which subtasks to choose? +
-How to evaluate them?+
  
-AdMIRe extension +  * Gülşen Eryiğit (chair) 
-Tom’s [[slides]][[https://docs.google.com/presentation/d/1PLeZfHiZeU7NY8BS6AmnEunnsPsk_MOwucOSzYusBD8/edit?usp=sharing]] +  * Joakim Nivre (co-chair) 
-[[Task website]][[https://semeval2025-task1.github.io/]] +  * Roberto Antonio Díaz Hernández 
-Data curation guidelines & notes+  * Ali Basirat 
 +  * Csilla Horváth 
 +  * Manon Scholivet 
 +  * Rob van der Goot 
 +  * Agata Savary 
 +  * Ranka Stanković 
 +  * Thomas Pickard 
 +  * Aline Villavicencio 
 +  * Tanja Samardzic 
 +  * Dawit J 
 +  * Alina Wróblewska 
 +  * Luka Terčon 
 +  * Olha Kanishcheva 
 +  * Dan Zeman 
 +  * Takuya Nakamura 
 +  * Federica Gamba 
 +  * Carlos Ramisch 
 +  * Flavio Massimiliano Cecchini 
 +  * Gosse Bouma 
 +  * Rusudan Makhachashvili 
 +  * Voula Giouli 
 +  * Ebru Çavuşoğlu 
 +  * Omer Goldman 
 +  * Reut Tsarfaty 
 +  * Chaya Liebeskind 
 +  * Faruk Mardan 
 +  * Adriana Pagano 
 +  * Ilan Kernerman 
 +  * Kutay acar 
 +  * Ludmila Malahov 
 +  * Teresa Lynn 
 +  * Lucía Amorós-Poveda
  
 +====== PARSEME shared task (Manon, Agata) ======
 +
 +  * subtask 1 (PARSEME 2.0)
 +  * quite established framework
 +  * novelty: non-verbal MWEs, diversity measures
 +  * subtask 2 (MWE generation)
 +  * given a context with eliminated MWEs, restore this MWE
 +  * Problems: how to evaluate the system
 +  * [ALINE] Consider taking into account the level of difficulty of the items? For example, some items will be more ambiguous and more difficult to determine
 +  * [JOAKIM] It is unclear which capacity of models we test
 +  * [TOM] Very difficult to evaluate, even manually.
 +  * subtask 3 (MWE comprehension/disambiguation)
 +  * Given a sentence and a span of a potential idiomatic expressions, classify it as idiomatic, literal or coincidental
 +  * [GULSEN] There are some datasets for this task. Maybe the 3rd category complicates the things.
 +  * [JOAKIM] 
 +  * [TOM] The same as SemEval 2022 (EN, PT, Galician). There are artefact issues (the models don’t really pay attention to the context).
 +  * subtask 4 (paraphrasing)
 +  * Given a sentence, rephrase it so that there are no MWEs
 +  * [AGATA] The input should be raw text, without a span. Objective: simplification of a text.
 +  * [JOAKIM] The most natural tasks among (2, 3 and 4). Close to what people do with LLMs. 
 +  * Can we avoid doing manual evaluation? (LLM as judge)
 +  * [TOM] His favorite
 +  * [ALINE] They work with questionnaires for humans for this problem. There is a synonym dataset. Another task: collect sentences with synonyms of MWEs.
 +  * [ALINE] Sometimes the simplest way to express a meaning is with a MWE.
 +  * Questions:
 +  * Which subtasks to choose?
 +  * How to evaluate them?
 +
 +====== AdMIRe extension ======
 +  * Tom’s [[https://docs.google.com/presentation/d/1PLeZfHiZeU7NY8BS6AmnEunnsPsk_MOwucOSzYusBD8/edit?usp=sharing|slides]]
 +  * [[https://semeval2025-task1.github.io/|Task website]]
 +  *  [[https://docs.google.com/document/d/1Suor8arKN5Npg9I4LEqpCma6p_k9vo3ZilioPltXtdA/edit?tab=t.0#heading=h.109xvas7yti|Data curation guidelines & notes]]
  
wg3/wg3_meeting_2025-03-12_edit.1741757448.txt.gz · Last modified: by gulsen.eryigit